library (readxl)
library (dplyr)

March Madness Data <- read excel ("March Madness Data.xlsx")
teams <- March Madness Data

# Load and clean data

teams <- teams %>%
filter(!is.na(NetRtg), !is.na(ORtg), !is.na(DRtg), !is.na(Luck)) %>%
mutate (Score = (NetRtg * 0.4) + (ORtg * 0.3) - (DRtg * 0.2) + (Luck * 100 * 0.1)) %>%
select (Team = "Team , Seed, Region, NetRtg, ORtg, DRtg, Luck, Score)

# --- Create pairwise training data ---

matchups <- data.frame ()

for (i in 1: (nrow(teams) - 1)) {
for (73 in (i + 1) :nrow(teams)) {
tl <- teams[i, ]
t2 <- teams[], ]

matchups <- bind rows (matchups, data.frame (
NetRtg diff = tlSNetRtg - t2$NetRtg,
ORtg_diff = t1$ORtg - t2S$O0Rtg,
DRtg diff = t1$DRtg - t2$DRtg,
Luck diff = tl1$Luck - t2$Luck,
Winner = ifelse(tl$Score > t2$Score, 1, 0)

# ———- Train MLR (logistic) model ---

model <- glm(Winner ~ NetRtg diff + ORtg diff + DRtg diff + Luck diff,
data = matchups, family = "binomial")

# --- Prediction function using model ---

# ——— AI used to help determine how the winner was to be predicted ---

predict winner <- function(tl, t2) {
input <- data.frame (
NetRtg diff = tl$NetRtg - t2SNetRtg,
ORtg diff = tl1$ORtg - t2$ORtg,
DRtg diff = t1$DRtg - t2$DRtg,
Luck diff = tl$Luck - t2$Luck
)
prob <- predict (model, input, type = "response")
winner <- if (prob >= 0.5) tl else t2
return (winner)

}

# ——— Fixed seed-based Round of 64 bracket logic ---
matchup order <- list(

c(l, 16), c(8, 9), c(5 12), c(4, 13),

c(6, 11), c(3, 14), c(7, 10), c(2, 15)
)

# —-—- Simulate region with model-based predictions ---
simulate region <- function(region name) {
region teams <- teams %>% filter (Region == region name)

simulate round <- function(tlist, round name) {
winners <- data.frame ()
cat ("\n", round name, " -", region name, "\n")

if (round name == "Round of 64") {
for (pair in matchup order) ({



tl <- tlist %>%
t2 <- tlist %>%

filter (Seed == pair[l]) %
filter (Seed == pair[2]) %
if (nrow(tl) == 0 | nrow(t2) == 0) next
win <- predict winner (tl, t2)
cat (tl$Team, "vs", t28Team, "-", winS$Team,
winners <- bind rows (winners, win)
}
} else {
for (i in seg(l, nrow(tlist),
tl <- tlist[i, ]
t2 <- tlist[i + 1, ]
win <- predict winner(tl, t2)
cat (t1$Team, "vs", t2STeam, "-", winSTeam,
winners <- bind rows(winners, win)

}

"\nn)

by = 2)) {

"\nn)

}

return (winners)

}

ro4
r32

simulate round
simulate round
sl6 simulate round
e8 simulate round
return (e8)

region teams, "Round of 64")
r64, "Round of 32")

r32, "Sweet 16")

sle, "Elite 8")

—~ e~ o~ o~

}

# --— Simulate all regions ---

south <- simulate region("South")
east <- simulate region ("East")
midwest <- simulate region ("Midwest")
west <- simulate region ("West")

Py

# ——— Final Four + Championship ---
ff <- bind rows(south, east, midwest, west)

cat ("\n Final Four:\n")

print (ff[, c("Team", "Region", "Seed")])
sfl <- predict winner (south, west)

sf2 <- predict winner (midwest, east)

cat ("\n Semifinals:\n")
cat (south$Team, "vs", west$Team, "-",
cat (midwest$Team, "vs", east$Team, "-",

sfl$Team, "\n")
sf2$Team, "\n")
champion <- predict winner (sfl, sf2)

cat ("\n National Champion:",
champion$Seed, ")\n")

champion$Team, " (Region:",

champion$Region,

"

14

Seed:",



