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Project 
Overview
Main Goals:

• Build a secure password 
registration and login system.

• Use cryptographic hashing (SHA-
256) and salting to protect 
credentials.

• Implement brute-force protection 
through lockout mechanism.

• Store user data using hash tables 
for efficiency



Problem Space

Password breaches 
and data leaks 
remain a major 
threat in modern 
systems
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Storing passwords in 
plaintext or using 
weak hashing is still 
common
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My project aimed to 
fix this by securely 
storing and verifying 
passwords using 
hashing and salting.
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How Hashing 
Was Used

• SHA-256 used to convert (salt + 
password) into a secure hash.

• Salt ensures each hash is unique, 
even for identical passwords.

• On login, password + salt are re-
hashed and compared to the stored 
hash.

• All operations run in constant time 
using unordered_map



Key Features

User Registration:

• Generates a unique salt
• Hashed the password 

with SHA-256
• Stores (salt, hash) pair 

securely

Login Verification:

• Uses the stored salt to re-
hash and validate input

• Limits attempts to prevent 
brute-force attacks



Code Walkthrough

• generate_salt(): Random 16-character alphanumeric string

• sha256(): Computes a SHA-256 hash using OpenSSL

• register_user(): Stores username, salt, and hashed password

• login_user(): Validates login with 3-try lockout policy

• unordered_map(): Efficient key-value store for fast retrieval



C++ Code Snippets



Demo Output



Challenges 
and Solutions
• OpenSSL Integration: Required low-level 

data handling (byte arrays, hex formatting)

• Salt Design: Ensured randomness and 
uniqueness to prevent hash collisions.

• Hash Comparison: Carefully handled string 
matching and lockout conditions.

• Testing: Ran multiple rounds of registration 
and login scenarios to ensure stability.



Reflection
• Practical use of hashing and salting 

in cybersecurity

• How to structure modular C++ code 
for authentication systems

• Challenges of real-world 
cryptography in low-level languages

• Importance of brute-force protection 
and user experience in security 
design



Final Thoughts 
& Future 
Improvements
• Final Result:

• Fully functional password system using 
hashing best practices.

• Strong foundation for real-world 
security features.

• Future Additions:

• Password strength validation

• Account recovery or multi-factor 
authentication

• Web-based front end



Thank You!


