
Password 
Storage and 
Validation 
Using Hashing

R Y A N  N A S H

C S C - 2 7 1 0 - 0 1

A P R I L  2 3 R D,  2 0 2 5



Project 
Overview
Main Goals:

• Build a secure password 
registration and login system.

• Use cryptographic hashing (SHA-
256) and salting to protect 
credentials.

• Implement brute-force protection 
through lockout mechanism.

• Store user data using hash tables 
for efficiency



Problem Space

Password breaches 
and data leaks 
remain a major 
threat in modern 
systems

01
Storing passwords in 
plaintext or using 
weak hashing is still 
common

02
My project aimed to 
fix this by securely 
storing and verifying 
passwords using 
hashing and salting.

03



How Hashing 
Was Used

• SHA-256 used to convert (salt + 
password) into a secure hash.

• Salt ensures each hash is unique, 
even for identical passwords.

• On login, password + salt are re-
hashed and compared to the stored 
hash.

• All operations run in constant time 
using unordered_map



Key Features

User Registration:

• Generates a unique salt
• Hashed the password 

with SHA-256
• Stores (salt, hash) pair 

securely

Login Verification:

• Uses the stored salt to re-
hash and validate input

• Limits attempts to prevent 
brute-force attacks



Code Walkthrough

• generate_salt(): Random 16-character alphanumeric string

• sha256(): Computes a SHA-256 hash using OpenSSL

• register_user(): Stores username, salt, and hashed password

• login_user(): Validates login with 3-try lockout policy

• unordered_map(): Efficient key-value store for fast retrieval



C++ Code Snippets



Demo Output



Challenges 
and Solutions
• OpenSSL Integration: Required low-level 

data handling (byte arrays, hex formatting)

• Salt Design: Ensured randomness and 
uniqueness to prevent hash collisions.

• Hash Comparison: Carefully handled string 
matching and lockout conditions.

• Testing: Ran multiple rounds of registration 
and login scenarios to ensure stability.



Reflection
• Practical use of hashing and salting 

in cybersecurity

• How to structure modular C++ code 
for authentication systems

• Challenges of real-world 
cryptography in low-level languages

• Importance of brute-force protection 
and user experience in security 
design



Final Thoughts 
& Future 
Improvements
• Final Result:

• Fully functional password system using 
hashing best practices.

• Strong foundation for real-world 
security features.

• Future Additions:

• Password strength validation

• Account recovery or multi-factor 
authentication

• Web-based front end



Thank You!


